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SUMMARY & CONCLUSIONS 
 
Analysts are sometimes asked to make frequency 
estimates for specific accidents in which the accident 
frequency is determined primarily by safety controls. 
Under these conditions, frequency estimates use 
considerable expert belief in determining how the 
controls affect the accident frequency.  To evaluate and 
document beliefs about control effectiveness, we have 
modified a traditional Bayesian approach by using 
approximate reasoning (AR)1 to develop prior 
distributions.  Our method produces accident frequency 
estimates that separately express the probabilistic results 
produced in Bayesian analysis and possibilistic results 
that reflect uncertainty about the prior estimates. Based 
on our experience using traditional methods, we feel 
that the AR approach better documents beliefs about the 
effectiveness of controls than if the beliefs are buried in 
Bayesian prior distributions.  We have performed 
numerous expert elicitations in which probabilistic 
information was sought from subject matter experts not 
trained in probability.  We find it much easier to elicit 
the linguistic variables and fuzzy set membership values 
used in AR than to obtain the probability distributions 
used in prior distributions directly from these experts 
because it better captures their beliefs and better 
expresses their uncertainties. 
 

1.  INTRODUCTION 
 
 In this paper, we present a method for 
generating Bayesian prior distributions of a Poisson 
parameter using approximate reasoning (AR).  In this 
method, the uncertainty introduced in generating the 
prior distribution is explicitly represented by fuzzy set 
memberships interpreted as a possibilistic measure of 

                                                 
1For a good survey of this field see Ramon Lopez de 
Mantaras, Approximate Reasoning Models, Ellis Horwood 
Series in Artificial Intelligence, Ellis Howrood LTD, 
1990. 

belief.2  This method was developed specifically for 
estimating accident frequencies for military weapon 
systems in which great reliance is placed on controls to 
reduce the accident frequency from relatively high to 
acceptable levels.  This approach is useful when there is 
a lack of “hard” data, but there is a wealth of anecdotal 
or experiential knowledge.  Such a situation arises when 
experience on a specific weapon system is limited, but 
more general weapon system experience with safety 
controls is applicable. 
 This problem can be approached probabilistically 
using Bayesian statistical analysis.3  To review this 
concept briefly, subjective estimates of the Poisson 
parameter called prior distributions are “updated” using 
available operating data to produce an updated estimate 
of the parameter.  When there is little operating 
experience or useful surrogate data, the prior 
distribution can dominate the results.  Such prior 
distributions often are generated using expert judgement 
that is difficult to document, and the original 
justification may be lost. 
 In the work reported here, we use Bayesian methods 
to include nonstatistical knowledge about the effect of 
safety controls on accident frequency. An important 
innovation is the use of the mathematical tools of AR to 
capture the knowledge base and reasoning used by 
experts in constructing prior distributions. This 
approach provides a rigorous, reproducible, and 
traceable basis for the prior distributions.  It also 
provides a means for explicitly indicating uncertainty 
about the prior distribution using possibility as an 
uncertainty measure.  In a typical Bayesian analysis, the 
uncertainty about the prior distribution is folded into the 
distribution itself, a practice that tends to obscure the 
issues involved in generating the prior distribution.  In 
our method, this source of uncertainty is treated 
separately and differently from probabilistic uncertainty 

                                                 
2D. Dubois and H. Prade, Possibility Theory, Plenum 
Press, 1988. 
 

3H. F. Martz and R. A. Waller, Bayesian Reliability 
Analysis, John Wiley and Sons, 1982. 
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by interpreting fuzzy set memberships a as a measure of 
the expert's uncertainty in generating prior distributions. 
 A schematic overview of our approach is shown in 
Fig. 1.  In this paper, we focus mainly on evaluating 
controls, generating prior distributions, and generating 
occurrence probability estimates.  The logical 
decomposition of an event into causal sequences is a 
critical aspect of our analysis because it allows experts to 
consider individual sequences leading to an accident one 
at a time.  This simplification is necessary in identifying 
the controls used to prevent an accident and in 
determining their effectiveness.  We do not discuss this 
important part of the analysis here but refer the reader to 
other discussion of this subject.4  We also do not discuss 
Bayesian analysis in detail because this technique is 
familiar to practitioners of reliability and probabilistic 
safety analysis.  We will spend the majority of this paper 
describing the AR evaluation of control effectiveness and 
translating this evaluation into the λ prior distributions.  
We also will show how the possibilistic measures of 
uncertainty introduced by the AR analysis are 
propagated to the occurrence probability estimates.  
These measures of uncertainty capture the expert’s 
beliefs about the effectiveness of the controls used to 
reduce accident frequency. 
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Fig. 1.  Overview of the Approach. 

                                                 
4S. W. Eisenhawer and T. F. Bott,  “Application of Approximate 
Reasoning to Safety Analysis, “17th International System Safety 
Conference, System Safety Society, August, 1999, Orlando, 
Florida, Los Alamos National Laboratory report LA-UR-99-
1932. 
 

2.  ILLUSTRATIVE EXAMPLE DEFINITION 
 
 The technique shown in this paper is nearly 
impossible to follow without an example.  The actual 
problems for which we developed and applied this 
technique are classified, so we are unable to discuss 
either the accident sequences or the numerical results in 
an open forum.  However, the example that we use to 
illustrate our method captures the important 
characteristics of the actual applications. 
 We are interested in estimating the probability of 
occurrence of a particular accident state for a weapon 
system during a time period τ.  We assume that the 
occurrence can result from any of four independent 
sequences of events.  Each sequence n can be modeled as 
a Poisson process with a constant occurrence rate λn.  For 
simplicity, we assume that no occurrences of the event 
have happened but presume considerable qualitative 
knowledge about the controls used to reduce the 
frequencies of the various sequences leading to the 
accident conditions. 
 Controls for the four accident sequences are 
summarized and evaluated in Table 1. In an actual 
application, the controls would be identified and 
evaluated by weapon system experts.  These evaluations 
use an agreed-upon set of linguistic descriptors for 
control effectiveness, in this case {Highly, Quite, 
Partially, Ineffective}.  This set of descriptors is called a 
Universe of Discourse (UOD).  These descriptors are 
defined in Table 2. 
 

3.  USING THE CONTROLS TO ESTIMATE λ PRIOR 
DISTRIBUTIONS 

 
 The evaluation of the effectiveness of controls forms 
the basis of our estimation of the λ priors for a Bayesian 
analysis.  We are going to treat these effectiveness 
descriptors as linguistic variables and fuzzy subsets of 
the UOD.  Our next step is to translate the qualitative 
descriptions of Table 1 into fuzzy set membership 
vectors.  This translation is called set assignment and 
introduces set assignment uncertainty.  A fuzzy set 
membership vector shows the set membership values for 
each of the fuzzy subsets for control effectiveness in the 
order:  {Highly, Quite, Partially, Ineffective}.  For 
example, a vector representing membership of .5 in 
Highly and .5 in Quite, with no membership in Partially 
or Ineffective would be {.5,.5,0,0}.  The mapping from the 
qualitative descriptions to the membership vectors relies 
on the judgment of the analyst, but we have found it 
helpful to provide the set of guidelines shown in Table 3.   
 Following these guidelines, the qualitative 
descriptions of Table 1 translate into the fuzzy set 
membership vectors shown in Table 4.  These fuzzy set 
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Table 1 
Description of Controls for Illustrative Example 

 
Sequence Controls Experts Beliefs concerning the Effectiveness of Controls 
1 1.1 Highly effective with high confidence 
2 2.1 Favor Highly effective but could only be Quite effective 

3.1 Favor Highly effective but could only be Quite effective 3 
3.2 No preference for Quite or Partially 

4 None Initiating event is lightning strike which has frequency of 
about 1 x 10-4 per year 

 
 
 

Table 2 
Definition of Control Effectiveness Linguistics 

 
Effectiveness Descriptor Definition 

Highly Effective The control virtually eliminates the occurrence of the sequence 
Quite Effective The control greatly reduces the occurrence rate of the sequence 
Partially Effective The control somewhat reduces the occurrence rate of the 

sequence 
Ineffective The control does not affect the occurrence rate of the sequence 

 
 
 

Table 3 
Set Assignment Membership Value Guidelines 

 

Belief Description Set Assignment 
Value 

Complementary Set 
Assignment Values 

Belief that value is exclusively in one set 1 0 
Strong belief that value is in one set, but some belief that 
another set may also be appropriate 

0.9 0.1 

Equal belief that the value is in any of n sets 1/n 1/n for each 
One set is favored, but another has significant support as well 0.7 0.3 

 
 
 

Table 4 
Control Effectiveness Fuzzy Set Membership Vectors 

 
Control Effectiveness Linguistic Descriptor Control 

Highly Quite Partially Ineffective 
1.1 1 0 0 0 
2.1 .7 .3 0 0 
3.1 .7 .3 0 0 
3.2 0 .5 .5 1 

Combined 3.1 and 3.2 .5 .3 0 0 
Effective 4 0 1 0 0 
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membership values will be interpreted as expressing the 
expert’s belief in which prior estimates for λ to use for 
each sequence.  The greater the fuzzy set membership, 
the greater the expert’s belief that a given effectiveness is 
appropriate for a set of controls. 
 In our example, two controls, 3.1 and 3.2, are used to 
reduce the accident frequency for sequence 3.  To apply 
our method in such a situation, the analysts evaluate the 
aggregate effectiveness of the control suite using a rule 
base.5  An example of such a rule base is shown in 
Table 5.  This rule base accepts control effectiveness 
descriptors for two controls and outputs the 
effectiveness of the combination using the same 
linguistic descriptors as the input.  The rule base shown 
here is used commonly in our analysis and represents a 
slight bias toward conservatism in combining controls.  
This bias is seen in the result for two partially effective 
controls.  Two partially effective controls result in a 
partially effective aggregate control.  This rule prevents 
stringing together a series of mediocre controls and 
claiming that the result is Highly effective. 
 The operation of this rule base is illustrated by 
evaluating the effectiveness of controls 3.1 and 3.2.  
Control 3.1 has an effectiveness described by the set 
membership vector {0.7,0.3,0,0} and 3.2 has {0,0.5,0.5,0}.  
Recall that the first position in the vector is for Highly, 
the second is for Quite, the third is for Partially, and the 
fourth is for Ineffective.  The Cartesian product of the 
membership vectors for controls 3.1 and 3.2 generates all 
the combinations of control effectiveness that have non-
zero memberships in both controls.  The pairs of 
effectiveness descriptors that we have to consider are 
(Highly, Quite), (Highly, Partially), (Quite, Partially), 
and (Quite, Quite).  Our notation is that the first value is 
from control 3.1, and the second is from 3.2.  As an 
example, according to the rule base Highly and Quite 
effective controls combine to produce a Highly effective 
aggregate.  The inferences of interest in our example are 
shown by highlighting the appropriate items in the rule 
base.  Note that three of the pairs result in an output of 
Highly. 
 The control effectiveness descriptors are fuzzy sets 
and have memberships associated with them.  We need 
some way to generate the membership value of the 
output effectiveness descriptors from the membership 
values of the inputs.  The membership value for the 
resultant arising from a pair of inputs is found by taking 
the minimum of the memberships values for the pair.  
This works fine when there is only one pair of inputs 

                                                 
5T. F. Bott, “An Approach to Evaluating the Effectiveness 
of Safety Controls,” Los Alamos National Laboratory 
report LA-UR-98-4953 (1998). 
 

that results in a given output.  However, in our case, 
there are three pairs of input that lead to the same 
output, namely, Highly.  In this case, the membership of 
the output is found using the Max-Min formula.6  This 
formula is succinctly stated as 
 
 µℜ = Max

∀ n,m( )→ℜ
Min κ n ,σ m( )( )   (1) 

 
 In this formula, κn and σm are elements n and m of 
fuzzy input membership vectors κ and σ and ℜ is a 
particular element output by the rule.  To find the 
membership for ℜ, one first finds the minimum 
membership in either κ or σ for every pair that result in 
ℜ.  The membership value of the resultant ℜ is then the 
maximum value over all pairs of the inputs κ and σ that 
result in ℜ.   
 An example using the rule base of Table 5 and the 
membership values for controls 3.1 and 3.2 is shown in 
Table 6.  Using the Max-Min formula, the resultant 
membership vector has values {.5,.3,0,0}, indicating a 
stronger belief in Highly than in Quite and no belief in 
Partially or Ineffective. 
 The final complication in our example is sequence 4.  
In this sequence, there are no controls, but the sequence 
frequency has a relatively low inherent frequency.  In 
some sequences, constraints or other factors not 
normally considered controls may dictate the frequency 
of the sequence.  We often encounter sequences whose 
frequencies are dictated primarily by the occurrence of 
external initiating events such as lightning.  The effect of 
the relative rarity of lightning strikes on the system may 
be treated as if it were a control, and can even be 
combined with other controls.  As we shall demonstrate 
later, the sequence 4 inherent frequency of about 10-4 per 
year corresponds to a control with that has full 
membership in Quite effective. 
 

4.  BAYES PRIOR ESTIMATE FOR POISSON 
PARAMETERS 

 
 As stated above, we have assumed that the 
occurrence of each sequence can be described using a 
Poisson process with the occurrence times distributed 
exponentially according to a Poisson parameter λn for 
sequence n.  To use a Bayesian estimation process, we 
make an initial or prior estimate for each λ using existing 
knowledge about each sequence and then modify that 
prior estimate using occurrence data derived from 
operational experience.  In this example, we assume that 

                                                 
6T. J. Ross, Fuzzy Logic with Engineering Applications, 
McGraw-Hill, New York, 1995. 
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Table 5 

Rule Base for Combining Reinforcing Controls 
 

Control 3.1 Effectiveness 
 Ineffective Partially Quite Highly 

Ineffective Ineffective Partially Quite Highly 
Partially Partially Partially Quite Highly 

Quite Quite Quite Highly Highly C
on

tr
ol

 3
.2

 
Ef

fe
ct

iv
en

es
s 

Highly Highly Highly Highly Highly 
 
 

Table 6 
Effectiveness Membership Values for Combined Controls 

 
Control 3.1 Effectiveness 

 Ineffective (0) Partially 
(0) 

Quite 
(.3) 

Highly 
(.7) 

Ineffective (0) Ineffective Partially Quite Highly 
Partially (.5) Partially Partially Quite 

Min(.3,.5)→ .3 
Highly 

Min(.7,.5)→ .5 
Quite (.5) Quite Quite Highly 

Min(.3,.5)→ .3 
Highly 

Min(.7,.5)→ .5 

C
on

tr
ol

 3
.2

 
Ef

fe
ct

iv
en

es
s 

Highly (0) Highly Highly Highly Highly 
 
 
we can assign λ to intervals.  The prior estimates are 
assumed to be uniform distributions over these 
intervals.  Although the assumption of a uniform 
distribution is not necessary to use this AR approach, we 
feel that such a choice generally will be appropriate to 
the level of knowledge we are assuming in using this 
method.  If enough knowledge exists to make more 
detailed prior estimates, then the AR approach probably 
does not use all the available information efficiently. 
 Using a uniform prior distribution for λ on the 
interval [λ2,λ1] and no occurrences during a time τ, a 
Bayes formula produces a posterior distribution for λ 
given by 
 

 g λ | 0( ) =
τe− λτ

e− λ2τ − e−λ1τ
  .(2) 

 
Statistics for λ can be generated from this distribution.  
For example, the mean λ for a given distribution g is 
given by 
 

 λ =
1
τ

1+
λ2τe

−λ 2τ − λ1τe
− λ1τ

e− λ2τ − e− λ1τ

 

 
 
 

 

 
 
 

  .(3) 

 
Similarly, the γ probability value for λ is given by 
 

 λγ = −
ln 1 − γ( )e−λ 2τ − γe−λ1τ[ ]

τ
  .(4) 

 
 Although Eq. (4) formally represents a probability 
interval for λ, we will refer to it as the γth percentile.  
These formulae are applicable to each sequence leading 
to the accident conditions.  The formulae will depend 
only on which λ interval is chosen as a prior. 
 

5.  BAYES PRIOR ESTIMATES VIEWED AS FUZZY 
SET ASSIGNMENTS 

 
 To translate control effectiveness into λ intervals, we 
define a set of intervals on the real line that correspond 
to the definitions for each effectiveness descriptor in 
Table 2.  For simplicity, we wish to have a one-to-one 
mapping between λ intervals and effectiveness 
descriptors.  Thus, each effectiveness will map into a 
single λ interval.  We typically base our definitions on 
the probability of one or more accident events occurring 
during a time period t given a particular λ.  This 
probability is found from 
 
 P s ≥ 1 in t[ ]= 1− e− λt   .(5) 
 
We use the system design lifetime for the value t—in our 
example about 20 yr.  In the systems we have examined, 
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most accident sequences would be expected to have a 
relatively high probability of occurrence during the 
design lifetime in the absence of controls.  To capture 
this, we define the lower bound of our highest λestimate 
interval, I4, at about .03 so that the probability of 
occurrence in the design life is P ≈ 0.5.  This definition 
also fixes the upper bound of our second highest 
interval, I3.  A highly effective control “virtually 
eliminates” an accident sequence.  We consider an 
accident sequence as being virtually eliminated if the 
probability of occurrence during design lifetime is less 
than about 10-3.  This sets the upper bound of our lowest 
interval I1 at about 3 × 10-5/yr.  We choose the upper 
limits on the remaining interval, I2, corresponding to a 
quite effective control as .003, 2 orders of magnitude 
higher than the I1 upper bound and an order of 
magnitude below the I3 upper bound.  The results of the 
analysis are insensitive to the lower limit on the intervals 
I1 to I3 as long as the interval covers a decade or more.  
Therefore, we typically choose the lower bound for the 
lowest interval as 10-6.  This set of intervals and the 
mapping from the effectiveness descriptors to the 
intervals is shown in Fig. 2. 
 This mapping emulates how an expert perceives 
control effectiveness affecting an initial estimate of λ in 
the interval I4.  A control that is ineffective leaves λ in the 
I4 interval.  A partially effective control moves λ to I3, 
Quite effective moves it to I2 and Highly effective moves 
it to I1. 
 The one-to-one mapping between control 
effectiveness and λ intervals means that the control 
effectiveness fuzzy membership values can be assigned 
one-to-one to λ intervals.  We interpret these fuzzy set 
membership assignments for a λ interval as indicating  
 

Highly
Quite

Partially

10-6 3x10-5 3x10-3 3x10-2 1.0

Poisson Parameter λ ( per year)

Control Effectiveness

Ineffective

I1 I2 I3 I4

 
Fig. 2.  Mapping from Control Effectiveness Fuzzy 
Subsets to λ Intervals. 

our belief that a given λ interval is the appropriate one to 
represent the accident-sequence frequency, when the 
controls are taken into account. 
 Recall that each of the intervals I1 through I4 is a 
uniform distribution for λ and can be used in Eq. (2) to 
generate a posterior λ distribution.  Each of these λ 
distributions can be used to generate λ statistics, which 
we then use to generate probabilities of occurrence using 
Eq. (5).  In Table 7, we summarize the mean λ, 90th 
percentile λ, and the probabilities of occurrence for a 20-
yr design lifetime that are generated by the different λ 
intervals. 
 To illustrate, consider sequence 2 of our example.  
The control effectiveness membership vector is {.7,.3,0,0}.  
We interpret this to mean that we have a relative belief 
value .7 that λ4 is in I1, .3 that it is in I2, and 0 that it is in 
I2 or I3.  This means that we have the relative belief that 
mean λ4 is 1.5 × 105 and Ps≥1 is 3 × 10-4.  Similarly, we 
have a belief value of 0.3 that the mean λ4 is 1.5 × 103 and 
Ps≥1 is 3 × 10-2. 
 The result then carries both the uncertainty 
associated with the λ prior estimate (represented by a 
uniform distribution over an interval) and uncertainty 
on assigning a λ prior interval by means of control 
effectiveness evaluation.  The former uncertainty is 
expressed by the g(λ|0) distribution, and the latter is 
expressed by the fuzzy subset memberships (interpreted 
as belief) associated with the g(λ|0) distribution. 
 

6.  INTERPRETING THE PROBABILITY OF 
OCCURRENCE RESULTS 

 
 Some representative probability of occurrence 
results for our example are shown in Table 8.  The upper 
bound uses the mean λ from the posterior distribution 
generated by the highest λ interval with non-zero set 
membership.  The lower bound is the result of using the 
λ posterior distribution generated by the lowest λ 
interval with non-zero set membership.  When only an 
upper bound is given, only one of the λ intervals has 
non-zero set membership.  The best estimate is found by: 
 
   If one of the λ set memberships is maximal use 
that λ, or 
    If the two largest λ set memberships are tied 
(typically both at .5) then use the geometric mean of the 
λ’s given by 
 
 λ1,2 = λ1λ2( )1 2

 (7) 
 
 In Table 5, sequence 2 exercises rule  and sequence 
3 with control 3.2 only exercises rule . 
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Table 7 

Mean and 90th Percentile Values for λ 
 

Mean 90th Percentile 
Prior λ Interval 

λ Ps≥1 λ Ps≥1 
I1 [1 × 10-6, 3 × 10-5] 1.5 × 10-5 3 × 10-4 2.7 × 10-5 5.4 × 10-4 

I2 [1 × 10-6, 3 × 10-5] 1.5 × 10-3 3 × 10-2 2.7 × 10-3 5 × 10-2 

I3 [1 × 10-6, 3 × 10-52] 1.4 × 10-2 2.4 × 10-1 2.6 × 10-2 4 × 10-1 

I4 [3 × 10-62, 1] 1.0 × 10-1 8.6 × 10-1 1.9 × 10-1 9.8 × 10-1 

 
 

Table 8 
Representative Results for Individual Sequence Probabilities of Occurrence 

 
Mean λ Occurrence Probability Interval Possible Event 

Sequences Lower Bound Upper Bound Best Estimate 
Sequence 1 - .0003 .0003 
Sequence 2 .0003 .03 .0003 
Sequence 3 

Control 3.2 only 
03 .24 .18 

 
 
 The probability of one or more occurrences from any 
of n sequences is found from the formula 
 

 P s ≥ 1 in t[ ]= 1− e
− λ nt

n
∑

(5) 
 
This is easily and rapidly computed using a Monte Carlo 
or other sampling simulation. 
 One potential drawback to this approach is the 
added complexity of the results.  Our accident frequency 
estimates include both the Bayesian distribution and 
fuzzy set memberships interpreted as possibilities or 
beliefs.  Potential users of safety results often wish to get 
a single, bottom-line answer, not a proliferation of 
uncertainty measures.  We have addressed this by 
explaining the interaction of the beliefs and the statistics.  
For example, we describe the results of Table 8 as 
showing that we are quite certain that the probability of 
occurrence for sequence 2 is less than .03 and that the 
average is .0003 or less.  This has mollified our sponsors 
to some extent, but we feel that better methods of 
communicating the results are needed. 
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Definition of Control Effectiveness Linguistics

Effectiveness Descriptor Definition

Highly Effective The control virtually eliminates the occurrence of the sequence

Quite Effective The control greatly reduces the occurrence rate of the sequence

Partially Effective The control somewhat reduces the occurrence rate  of the sequence

Ineffective The control does not affect the occurrence rate of the sequence

Description of Controls for Illustrative Example

Sequence Controls Experts Beliefs concerning the Effectiveness of Controls

1 1.1 Highly effective with high confidence

2 2.1 Favor Highly effective but could only be Quite effective

3.1 Favor Highly effective but could only be Quite effective3

3.2 No preference for Quite or Partially

4 None Initiating event is lightning strike which has frequency of about

1 x 10-4 per year

Evaluation of Control 
Effectiveness



Set Assignment Membership Value Guidelines

Belief Description Set Assignment

Value

Complementary Set

Assignment Values

Belief that value is exclusively in one set 1 0

Strong belief that value is in one set, but some belief that

another set may also be appropriate

0.9 0.1

Equal belief that the value is in any of n sets 1/n 1/n for each

One set is favored, but another has significant support as

well

0.7 0.3

Control Effectiveness Fuzzy Set Membership Vectors

Control Effectiveness Linguistic DescriptorControl

Highly Quite Partially Ineffective

1.1 1 0 0 0

2.1 .7 .3 0 0

3.1 .7 .3 0 0

3.2 0 .5 .5 1

Combined

3.1 and 3.2

.5 .3 0 0

Effective 4 0 1 0 0

Evaluation of Control 
Effectiveness



Effectiveness Membership Values for Combined Controls

Control 3.1 Effectiveness

Ineffective (0) Partially

(0)

Quite

(.3)

Highly

(.7)

Ineffective

(0)

Ineffective Partially Quite Highly

Partially

(.5)

Partially Partially Quite

Min(.3,.5)→ .3

Highly

Min(.7,.5)→ .5

Quite (.5) Quite Quite Highly

Min(.3,.5)→ .3

Highly

Min(.7,.5)→ .5

Highly

(0)

Highly Highly Highly Highly

Evaluation of Control 
Effectiveness

Fuzzy Set Representation of 
Control Effectiveness



Highly
Quite
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λγ = −
ln 1 − γ( )e−λ 2τ − γe−λ1τ[ ]

τ

λ =
1
τ

1+
λ2τe−λ 2τ − λ1τe− λ1τ

e− λ2τ − e− λ1τ

 

 
 
 

 

 
 
 

g λ | 0( ) =
τe− λτ

e− λ2τ − e−λ1τ

Generate λ Prior Distributions

λ Prior Distributions for 
Poisson Parameter with 

Uniform Prior

Mean λ Generated by Prior 
and Operating Experience

γth Cumulative Probability
λ Generated by Prior and 

Operating Experience

P s ≥ 1 in t[ ]= 1− e− λtProbability of One or More 
Occurrences in Time t

Generate Occurrence 
Probability Estimates



Mean and 90th Percentile Values for λ

Mean 90th PercentilePrior λ Interval

λ Ps≥1  λ Ps≥1

I1 [1 x 10-6, 3 x 10-5] 1.5 x 10-5 3 x 10-4 2.7 x 10-5 5.4 x 10-4

I2 [1 x 10-6, 3 x 10-5] 1.5 x 10-3 3 x 10-2 2.7 x 10-3 5 x 10-2

I3 [1 x 10-6, 3 x 10-52] 1.4 x 10-2 2.4 x 10-1 2.6 x 10-2 4 x 10-1

I4 [3 x 10-62, 1] 1.0 x 10-1 8.6 x 10-1 1.9 x 10-1 9.8 x 10-1

λ =
1
τ

1+
λ2τe−λ 2τ − λ1τe− λ1τ

e− λ2τ − e− λ1τ

 

 
 
 

 

 
 
 

λγ = −
ln 1 − γ( )e−λ 2τ − γe−λ1τ[ ]

τ

P s ≥ 1 in t[ ]= 1− e− λt

Generate Occurrence 
Probability Estimates

Include Operating History to 
Generate λ Posterior 
Distribution Statistics



Mean λ Occurrence Probability IntervalPossible Event

Sequences Lower Bound Upper Bound Best Estimate

Sequence 1 - .0003 .0003

Sequence 2 .0003 .03 .0003

Sequence 3

Control 3.2 only

03 .24 .18

Generate Occurrence 
Probability Estimates

Multiple Probability Estimates Reflect 
Uncertainty Generated during 

Construction of Prior Distribution



Control 3.1 Effectiveness

Ineffective (0) Partially

(0)

Quite

(.3)

Highly

(.7)

Ineffective

(0)

Ineffective Partially Quite Highly

Partially

(.5)

Partially Partially Quite

Min(.3,.5)→ .3

Highly

Min(.7,.5)→ .5

Quite (.5) Quite Quite Highly

Min(.3,.5)→ .3

Highly

Min(.7,.5)→ .5

Highly

(0)

Highly Highly Highly Highly

Evaluation of Control 
Effectiveness

Rule Base for Evaluating the 
Effectiveness of Multiple 

Controls

Quite and Partially Produces 
Quite

Maximum of Minima for 
Highly Produces Membership 

of .5 in Highly



Provides a structured Method for Constructing Prior 
Distributions

Summary and Conclusions

Provides a Traceable Documentation Trail for Prior 
Distributions

Provides Separate Uncertainty Measure for Prior 
Distribution

Efficient Method for Collecting Expert Judgment on 
Control Effectiveness
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